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Abstract
The present experiment was undertaken to validate a probiotic of canine origin for its potential use in dogs. A total of fifteen adult female Labrador dogs
were allocated to three equal groups and fed a basal diet without probiotic (control) or with probiotic of either canine (Lactobacillus johnsonii CPN23; cPRO)
or dairy (L. acidophilus NCDC 15; dPRO) origin for 9 weeks. The digestibility of most macronutrients remained similar among the groups; however, fibre
digestibility was improved (P= 0·034) in dogs receiving cPRO. The faecal fermentative metabolites ammonia (P < 0·05) and lactate (P= 0·094) were altered
favourably, indicating a positive influence of both probiotics. Faecal concentrations of acetate, propionate and butyrate were increased (P < 0·01) in both
probiotic groups. However, improvements were higher in cPRO v. dPRO. The delayed-type hypersensitivity reaction to intradermal inoculation of phyto-
haemagglutinin-P was higher (P= 0·053) in cPRO as compared with control. The antibody response to sheep erythrocytes was, however, similar across the
three groups. Overall, in dogs, the canine-origin probiotic was superior when compared with the dairy-origin probiotic.
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Probiotics are micro-organisms that are added to the diet to
exert beneficial effects on the host. One important criterion
for selection of a probiotic is the host species specificity(1). It
is believed that probiotic organisms should be naturally occur-
ring in the target species to be effective(2) by inducing a greater
production of SCFA in the hindgut and effecting optimal muco-
sal immunity. SCFA, in turn, play important health-promoting
roles in the maintenance of gut barrier function by contributing
to energy needs of host cells, absorption of select nutrients and
inhibition of pathogenic micro-organisms(3). Probiotics have the

potential to stimulate innate immune responses without indu-
cing inflammation; they interact with dendritic cells and
follicle-associated epithelial cells and initiate responses mediated
by macrophages and T- and B-lymphocytes(4).
Adhesion of probiotic bacteria to epithelial cells is host spe-

cific; hence, for improved colonisation, the probiotic bacteria
should originate from the same host species(5). Commensal
organisms may exert species-specific effects, and therefore, a
successful canine probiotic organism would ideally be derived
from the canine gastrointestinal tract(6). However, there are
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only a few studies on canine-sourced bacteria as probiotics for
dogs(7,8).
Further, the available literature shows that most of the pro-

biotics studies in dogs have been carried out with extruded pet
foods as the basal diet. In most developing countries, including
India, pet dogs are reared mainly on home-cooked diets of
varied composition. However, few studies have examined
the effects of probiotics when supplemented with homemade
vegetarian diets. The present study, therefore, evaluated the
potential of a canine-origin probiotic v. a dairy-origin probiotic
for its possible use in dogs fed a homemade vegetarian diet.

Materials and methods

Animals, housing and management

The study protocol was approved by the Institutional Animal
Ethics Committee, and was carried out in conformity with
Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA) guidelines. Dogs used
for the study were housed under hygienic conditions in a
well-ventilated kennel having separate cubicles (1·52 × 0·91
m2) for individual housing and care. The dogs were let out
in an open space adjacent to the kennel in the morning and
evening for exercise and socialisation except during the collec-
tion period.

Animals and diets

Fifteen adult female Labrador dogs (aged about 5 years; 22·9
(SE 0·6) kg average body weight) were randomly allocated to
three equal groups based on body weight and fed a pressure-
cooked moist diet. The dogs had an ideal body condition score
and were declared healthy by a veterinarian based on medical
history, physical examination, complete blood count and
serum biochemistry. The basal diet was specially formulated
to meet National Research Council recommendations
(adequate intake) for adult maintenance(9) (Supplementary
Table S1). The amount of food was calculated to meet the
maintenance energy requirement (kcal = 130 × kg body
weight0·75; kJ = 544 × kg body weight0·75)(9). The diet was sup-
plemented with either no probiotics (control), or with a pro-
biotic of canine origin (Lactobacillus johnsonii CPN23; cPRO)
or dairy origin (Lactobacillus acidophilus NCDC 15; dPRO).
The control group received a placebo (De Man, Rogosa and
Sharpe broth), while cPRO and dPRO groups received cul-
tures of the respective probiotics (at 2·3 × 108 colony-forming
units/animal per d) mixed with the basal diet.
The canine-origin probiotic L. johnsonii CPN23 was previ-

ously developed in our laboratory and characterised using
16S rRNA analyses (GenBank accession no. KP065494). A
freeze-dried pure culture of the L. acidophilus NCDC 15 strain,
procured from the National Collection of Dairy Culture
(NCDC), National Dairy Research Institute (Karnal, India)
was used for feeding the dPRO group.
All the dogs had 24 h access to clean and fresh water ad libi-

tum. Before the study, dogs were adapted to the basal diet for a
period of 15 d. Each individual dog’s ration was divided into

two equal portions and fed once each in the morning (09.00
hours) and evening (17.00 hours). Probiotics were adminis-
tered only in the morning. The experimental period lasted
for 9 weeks.

Experimental protocol

Food consumption was monitoring daily. A 4 d digestibility
trial was conducted after 7 weeks of feeding as described
earlier(10) to calculate the apparent digestibility (nutrient
intake – nutrient output/nutrient intake × 100). A 1–4-point
palatability score was adopted for subjective assessment of
the acceptability of the experimental diets(11). The faeces
voided by individual dogs, collected quantitatively over the
preceding 24 h, were weighed individually for each dog,
mixed thoroughly and used for further sampling and analysis.
The faecal consistency score was recorded based on a 1–
5-point scale(11). Three different aliquots were drawn from
the faecal samples and processed for the determination of
DM, N and fermentative metabolites as described else-
where(10). The samples of faeces and food were dried at 60°
C in a forced-draft oven, ground through a 2 mm screen in
a laboratory mill (SM100; Retsch GmbH) and stored in airtight
high-density polyethylene jars pending further analysis.

Laboratory analyses

The ground samples of food and faeces were analysed for
DM, organic matter, crude protein, ether extract, crude fibre
and crude ash, while N-free extract was calculated(12). The
pH of the faecal samples was determined by a pH meter
(Eutech Instruments). Lactate, ammonia, SCFA and branched-
chain fatty acid (BCFA) concentrations in the faecal samples
were analysed as described earlier(13).
Cell-mediated immunity (CMI) was assessed at 8 weeks by

measurement of skin indurations as type-IV delayed-type
hypersensitivity (DTH) reaction to phytohaemagglutinin-P
(Sigma) as a mitogen, as detailed previously(14). For the humoral
immune response, dogs were intravenously injected with 1 ml
of a 10 % suspension of washed sheep erythrocytes after 5
weeks of experimental feeding. Serum samples collected at peri-
odic intervals (0, 7, 14, 21 and 28 d) were used for an antibody
titre assay using the microtitre haemagglutination procedure(15).

Statistics

The data were analysed by one-way ANOVA using SPSS 20.0
(SPSS Inc.). Means were compared using Tukey’s post hoc test.
Additionally, contrast analysis was employed to ascertain the
differences, if any, between the treatments cPRO and
dPRO. Significance was declared at P≤ 0·05.

Results and discussion

Nutrient intake and digestibility

Data on food intake and apparent digestibility are presented in
Table 1. The palatability of the diet and daily food intake were
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similar among the groups. The apparent digestibility of DM,
crude protein, ether extract and N-free extract was not influ-
enced by the source of probiotics. However, the observed
increase (P = 0·034) in crude fibre digestibility in the cPRO
group could have been due to greater fermentability of the
undigested fibre entering the hindgut, possibly due to an ele-
vated population of fibrolytic microbes induced by the
canine-origin probiotic L. johnsonii CPN23.

Faecal characteristics

Data on faecal characteristics are presented in Table 2. There
was no influence of the probiotics on the faecal score or on the
frequency of defecation. A significant (P= 0·012) reduction
in faecal ammonia concentration was evident in both the
cPRO and dPRO groups in comparison with the control.
Ammonia is formed during colonic fermentation of protein
and is considered detrimental to health. Probiotics are pre-
sumed to induce lowered production of ammonia. Faecal lac-
tate tended to be higher (P = 0·091) in the cPRO group as
compared with control. Additionally, contrast analysis also
revealed a trend for higher (P = 0·059) lactate in the cPRO
group compared with the dPRO group. Increased lactate pro-
duction along with SCFA lowers the pH of the hindgut which,
besides facilitating greater protonation of ammonia, leading in
turn to its higher faecal excretion(16), is considered detrimental
to pathogenic micro-organisms(17).
Faecal concentrations of both acetate and butyrate were

higher (P < 0·001) in the cPRO group than the dPRO group
which, in turn, were higher as compared with control.
Additionally, contrast analysis also revealed higher acetate
(P= 0·019) and butyrate (P = 0·001) levels in the cPRO
group than the dPRO group, indicative of better adaptation
of the canine-origin probiotic in the hindgut of the dogs in
comparison with the dairy-origin probiotic. Acceleration in
the net production of SCFA and lactic acid by supplementa-
tion of probiotics lowers the net production of ammonia,
and a similar result was evident in the present study. Faecal

levels of isovalerate were lower (P = 0·037) in the dPRO
group while those of valerate were lower (P < 0·05) in the
cPRO group compared with control. Consequently, faecal
levels of total BCFA were reduced (P < 0·01) in the cPRO
group in comparison with control. The BCFA isobutyrate
and isovalerate are produced from protein fermentation, spe-
cifically from the deamination of valine and leucine, respect-
ively, and are generally believed to be putrefactive leading
to production of toxic metabolites deleterious for host
health(18,19). The present observation of a generalised reduc-
tion in BCFA in both the probiotic-supplemented groups,
therefore, is indicative of their health-promoting effects.
Further, the reduction (P < 0·05) in the total BCFA in the
cPRO group v. control is suggestive of the advantages of
using the species-specific probiotic in dogs.

Immune response

Skin induration tended to improve (P= 0·053) in the cPRO
group (8·3 (SE 0·3) mm) group when compared with control
(7·5 (SE 0·2) mm) while that of the dPRO group (7·9 (SE
0·3) mm) was comparable with both. There was, however,
no variation in the antibody response against sheep erythro-
cytes among the three dietary groups. The CMI response,
mediated by thymus-derived T-lymphocytes which are respon-
sible for DTH reactions, is considered as a good indicator of
the effector phase of the CMI response in vivo(20). The
improvements evident in the DTH response by the cPRO
group dogs v. the control, in turn, imply that the canine-origin
probiotic acted better at inducing an augmented CMI response
than that of the dairy-origin probiotic. Stimulation of systemic
components of the immune system, in particular the CMI, may
help to regulate changes in the gut microflora, for example by
increasing macrophage phagocytic activity using lactic acid
bacteria(21). Similarly, use of Jerusalem artichoke as a prebiotic
has been reported to improve the DTH response to
phytohaemagglutinin-P in dogs(22).

Table 1. Effect of source of probiotics on the food intake and digestibility of nutrients in Labrador dogs

(Mean values with their standard errors; n 5)

Dietary group

Control cPRO dPRO

Mean SE Mean SE Mean SE P*

Palatability† 1·72 0·31 1·68 0·28 1·68 0·16 0·961
Mean daily food (DM) intake

DM intake (g) 354·4 22·9 361·8 50·2 364·9 20·1 0·883
DM intake (g/kg body weight0·75) 34·45 0·05 34·50 0·26 34·44 0·12 0·886

Digestibility of nutrients (g/kg)

DM 830 23·7 836 40·5 847 11·0 0·622
Organic matter 848 21·3 853 37·1 865 11·5 0·595
Crude protein 796 30·3 816 35·7 826 24·5 0·317
Ether extract 877 7·5 873 10·4 890 5·5 0·341
Crude fibre 354a 15·4 419b 13·7 386a,b 16·4 0·034
N-free extract 904 9·0 901 17·7 914 6·6 0·720

Control, basal diet alone; cPRO, basal diet supplemented with probiotic of canine origin; dPRO, basal diet supplemented with probiotic of dairy origin.
a,b Mean values with unlike superscript letters were significantly different (P ≤ 0·05).
* Based on one-way ANOVA.

†Based on a 1–4-point scale.
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Conclusion

The results are indicative of the superiority of a canine-origin
probiotic over a dairy-origin probiotic, when supplemented in
the diet of dogs.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/jns.2017.35
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